
December 2004 www.stsc.hill.af.mil 9

At a high level, maintenance projects
consist of three types of work:

1. Maintaining an existing, functioning
application.

2. Modifying existing code to support
changing requirements.

3. Adding new functionality to an exist-
ing application.
A team doing a new build for an exist-

ing application would only be concerned
with item Nos. 2 and 3. A team keeping an
existing code base functioning would only
do item No. 1, and possibly item No. 2
depending on how new builds are han-
dled. A project manager may be responsi-
ble for both areas and might need to esti-
mate the effort required for all three. This
article will deal with each individually.

Maintaining Existing Code
Maintenance as we are defining it consists
of three types of activities [1]:
• Corrective Maintenance. Fixing

bugs in the code and documentation.
Bugs are areas where the code does
not operate in accordance with the
requirements used when it was built.

• Adaptive Maintenance. Modifying
the application to continue function-
ing after installation of an upgrade to
the underlying virtual machine (data-
base management system, operating
system, etc.).

• Perfective Maintenance. Correcting
serious flaws in the way it achieves re-
quirements (e.g., performance problems).
Maintenance effort is a function of the

development effort spent on the original
project. (Figure 1 shows an example of a
commercial tool reuse parameter screen).
The larger the original project in terms of
effort, the more staff must be assigned to
maintain the application. A second factor
is Annual Change Traffic (ACT), or the
percent of the code base that will be

touched each year as a result of mainte-
nance work. Numbers for ACT between 3
percent and 20 percent are reasonable,
with 12 percent to 15 percent being fairly
typical. The Nominal Annual Maintenance
effort while the application is in a mainte-
nance steady state will equal

ACT x PM

where,

PM is the original person months of devel-
opment effort.

Maintenance steady state is typically
achieved in year four following software
delivery. Between software delivery and
steady state, the maintenance effort follows

a Rayleigh1 curve starting with 1.5 x ACT x
PM in year one and dropping down to the
steady state value. Software maintained
beyond nine years typically sees mainte-
nance costs begin to climb again. This is
due to a combination of increasingly frag-
ile code and an increasing distance between
the technology used for development and
the current state of the art.

If you know the effort spent on the
original development, the above equations
may be used as shown. If you do not know
the original development effort, you must
first estimate that effort, normally using a
commercial estimation tool. This will
require that you count the physical lines of
code (or function points), and then either
make educated guesses at values for envi-
ronmental variables (team capability and so

Estimating and Managing Project Scope for
Maintenance and Reuse Projects

Estimating project scope is considered by many to be the most difficult part of software estimation. Parametric models have been
shown to give accurate estimates of cost and duration given accurate inputs of the project scope, but how do you input scope early
in the life cycle when the requirements are still vaguely understood? How can scope be estimated, quantified, and documented in
a manner that is understandable to management, end users, and estimating tools? This article focuses on scope estimates for
maintenance and reuse work, including bug fixes (corrective maintenance); modifications to support changes in the operating sys-
tem, database management system, compiler, or other aspect of the operating environment (adaptive maintenance); and modifi-
cations of existing functionality to improve that functionality (perfective maintenance). Reuse includes any case where you are
modifying an existing code base to support enhanced functionality, and includes cases where an existing application is translat-
ed to a new language. The effort estimates cover code fixes and enhancements, regression and other testing of those fixes, updates
to documentation, and management of those efforts. It does not include requirement/usability efforts or deployment efforts.

William Roetzheim
Cost Xpert Group, Inc.

Figure 1: Example of Commercial Tool Reuse Parameter Screen

Figure 1: Example of Commercial Tool Reuse Parameter Screen

on) or use the tool’s default values.
In some cases, strategic considerations

will require that programmers with knowl-
edge of the product be kept available and
current to facilitate future planned or
potential modifications of the code. These
developers would then be available to make
required short fixes to the code as well. In
this case, factors outside the scope of this
article would dictate the number of devel-
opers that must be kept available and on
the maintenance staff.

Modifying Existing Code
The basis of code modification is very sim-
ple: Code already exists that may be utilized
in any given project. You begin by actually
counting the values measured in the exist-
ing application(s). For example, if using
lines of code (LOC), employ a code count-
ing utility to physically count the lines of
code in the existing program modules (or
use the values from your configuration
management system with an adjustment to
remove the impact of blank lines and com-
ments). If using Function Points, count the
existing reports, screens, tables, and so on.

Calculating the Equivalent
Volume
Our goal is to convert from the known
value for the volume of reusable code to
an equivalent volume of new code. Think
about it this way:
• If we have 100 function points worth

of reusable code but the reusable code
is worth nothing to us, then no effort
will be saved; the equivalent amount of
new code is 100 function points.

• If we have 100 function points worth
of reusable code and we can reuse it
without any changes, retesting, or inte-
gration whatsoever, then using the
code is a freebie from a developmental
perspective. The equivalent amount of
new code is 0 function points.

• If we have 100 function points worth
of reusable code and this saves us half
the effort relative to new code, then the
equivalent amount of new code is 50
function points.
We convert from reused volume values

to equivalent new volume values by looking
at six factors: Percent Design Modification
(PDM), Percent Code Modification (PCM),
Percent Integration and Testing (PI&T),
Assessment and Assimilation (AA),
Software Understanding (SU), and
Unfamiliarity (UNFM) with software.

Percent Design Modification
The PDM measures how much design effort
the reused code will require. Basically, a low

percent value indicates high code reuse,
whereas a high percent value indicates low
code reuse and increases the requirement to
develop new code as follows:
• A value of 0 percent says that the

reused code is perfectly designed for
the new application and no design time
will be required at all.

• A value of 100 percent says that the
design is totally wrong and the existing
design will not save any time at all.

• A value of 50 percent says that the
design will require some changes and
that the effort involved in making these
changes is 50 percent of the effort of
doing the design from scratch.

For typical software reuse, the PDM will
vary from 10 percent to 25 percent.

Percent Code Modification
The PCM measures how much we will
need to change the physical source code as
follows:
• A value of 0 percent says that the

reused code is perfect for the new appli-
cation, and the source code can be used
without change.

• If the reused code was developed in a
different language and you need to port
the code to your current language, the
value would be 100 percent (ignoring
any potential automated translation
using automatic translation tools).

• Numbers in between imply varying
amounts of code reuse.
The PCM should always be at or higher

than the PDM. As a rule of thumb, we have
found the PCM is often twice the PDM.

Percent Integration and Testing
The PI&T measures how much integration
and testing effort the reused code will
require as follows:
• A value of 0 percent would mean that

you do not anticipate any integration or
integration test effort at all.

• A value of 100 percent says that you
plan to spend just as much time inte-
grating and testing the code that you
would if it was developed new as part
of this project.

• Numbers in between simply refer to dif-
fering degrees of integration and testing
effort relative to new development.
The PI&T should always be at or high-

er than the PCM. It is recommended that
you set the PI&T to at least twice the PCM.

It is not unusual for this factor to be
100 percent, especially for mission-critical
systems where the risk of failure is signifi-
cant. For commercial off-the-shelf compo-
nents (purchased libraries) where the PDM
and PCM are often zero, it is not unusual
to see a number of 50 percent here to

allow for the integration effort and time
spent testing the application with the com-
mercial component.

Finally, after measuring your existing
code’s volume and estimating your PDM,
PCM, and PI&T, calculate the Adaptation
Adjustment Factor (AAF) where AAF is
the:

AAF = .4DM + .3CM + .3 I&T (1)

where,

this equation comes from [2]2.

Suppose that we need to implement a
new e-commerce system consisting of
15,000 source lines of code (SLOC). Let
us ignore environmental adjustments for
the moment.

Assessment and Assimilation
AA indicates how much time and effort
will be involved in testing, evaluating, and
documenting the screens and other parts
of the program to see what can be reused.
Values range from 0 percent to 8 percent.

Software Understanding
SU estimates how difficult it will be to
understand the code once you are modi-
fying it, and how conducive the software
is to being understood. Is the code well
structured? Is there good correlation
between the program and application? Is
the code well commented? The range of
possible values is a numeric entry
between 10 percent and 50 percent,
default 30 percent.

Unfamiliarity With Software
UNFM with software indicates how
much your team has worked with this
reusable code before. Is this their first
exposure to it, or is it very familiar? The
range of possible values is between 0 per-
cent and 100 percent, default 40 percent.

Using the Six Factors
Three of the factors – AA, SU, and
UNFM with software – add a form of
tax to software reuse, compensating for
the overhead effort associated with
reusing code. For projects where the
amount of reuse is small (AAF is less
than or equal to 50 percent), the follow-
ing formula applies with adjustments per
the above factors:

ESLOC = ASLOC x
[AA + AAF(1 + 2 x SU x UNFM)]

where,

ESLOC is the equivalent SLOC and

Reuse

10 CROSSTALK The Journal of Defense Software Engineering December 2004

December 2004 www.stsc.hill.af.mil 11

Estimating and Managing Project Scope for Maintenance and Reuse Projects

ASLOC is the actual SLOC.

Before discussing how this equation is
used to determine the reuse effort, let us
take a step back to discuss a simple equa-
tion to determine effort. If you are aware
of the number of thousand SLOC
(KSLOC) your developers must write, and
you know the effort required per KSLOC,
then you could multiply these two num-
bers together to arrive at the person
months of effort required for your project.

Effort = Productivity x KSLOC

where,

KSLOC represents a measure of program
scope.

Table 1 shows some common values
that Cost Xpert researchers have found for
these linear productivity factors. The
COCOMO II value comes from research
by Barry Boehm at the University of
Southern California (USC). The values for
embedded, e-commerce, and Web devel-
opment come from Cost Xpert research
working with a variety of organizations,
including IBM and Marotz.

You also must consider that
researchers have found that productivity
varies with project size. In fact, large pro-
jects are significantly less productive than
small projects. The probable causes are a
combination of increased coordination
and communication time, plus more
rework required due to misunderstand-
ings.

This productivity decrease with
increasing project size is factored in by
raising the number of KSLOC/thousand
software LOC to a power greater than 1.0.
This exponential factor then penalizes
large projects for decreased efficiency.
Table 2 shows some typical size penalty
factors for various project types. Again,
the COCOMO II value comes from work
by Barry Boehm at USC; values for
embedded, e-commerce, and Web come
from work by Cost Xpert Group and our
customers. Note that because the size fac-
tor is an exponential factor, rather than lin-
ear, it does not change with project size,
but rather changes in impact on the end
result with project size.

As seen in the tables, the productivity
and penalty constants vary by project and
organization. Let us take an example
involving 15,000 reused SLOC. Using the
following formula, as well as the produc-
tivity and size penalty factors for e-com-
merce development, the predicted effort
will be:

Effort = Productivity x KSLOCPenalty

= 3.08 x 151.030

= 3.08 x 16.27
= 50 Person Months

Suppose we found that we could get by
with 10 percent design modifications, 20
percent code modifications, and 40 percent
integration and test effort. AAF would then
be calculated as:

AAF = (0.4x0.1) + (0.3x0.2) + (0.3x0.4) = 0.22

Because AAF is less than or equal to
50 percent we can use the formula just
presented. Now, suppose that AA was 4
percent, SU was 30 percent, and UNFM
was 40 percent. The equivalent source
lines of code (ESLOC) would now be:

ESLOC = 15,000
[0.04 + 0.22(1 + 2 x 0.3 x 0.4)] = 4,692

Using our earlier assumptions, the effort
required to build this software would be:

Effort = Productivity x ESLOCPenalty

= 3.08 x 4.6921.030

= 3.08 x 4.915
= 15.14 Person Months

The formula when reuse is low and
AAF is less than 50 percent changes. The
formula in this situation is:

ESLOC = ASLOC x
[AA + AAF +(SU x UNFM)]

Let us work through our same exam-
ple of 15,000 lines of reused code, but
let us now suppose that the design mod-
ification is 50 percent, the code modifi-
cation 100 percent, the integration and
test are 100 percent, and the correct val-
ues for AA, SU, and UNFM are 8 per-
cent, 50 percent, and 100 percent respec-
tively.

AAF is now calculated as:

AAF = (0.4 x 0.5) + (0.3 x 1.0) + (0.3 x 1.0) = 0.8

Because AAF is over 50 percent, we
use the formula as follows:

ESLOC = 15,000 x [0.08+0.8+0.5x1.0]
= 15,000 x 1.38
= 20,700

Effort is now calculated as:

Effort = Productivity x ESLOCPenalty

= 3.08 x 20.71.030

= 3.08 x 22.67
= 69.82 Person Months

In this case, as seen by comparing the
person months in the first example of this
article with the person months in the final
example, reusing those 15,000 LOC actual-
ly takes 19.82 person months more effort
than writing the same code from scratch!
In fact, this phenomenon is even more
pronounced than shown in the preceding
example. If you need 15,000 lines of new
functionality, you will seldom find a
reusable block of code that exactly match-
es the functionality you are looking for.
More often, the reused code will be signif-
icantly larger than the new code because it
will do many functions that you are not
interested in.

Perhaps you will be reusing a piece of
code that is 25,000 LOC in size, all to get
at those 15,000 lines of code worth of
functionality that you care about. Well, the
entire 25,000 LOC will typically need to
be assessed, understood, and tested to
some degree. The end result is that in gen-
eral, you will find that somewhere
between 15 percent and 30 percent design
change is the crossing point beyond which
you are typically better off rewriting the
code from scratch. The correct value in

Project Type Linear Productivity Factor (PM/KSLOC)
COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Table 1: Common Values for Linear Productivity Factor

Project Type Exponential Size Penalty Factor
COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Table 1: Common Values for Linear Productivity Factor

Figure 1: Example of Commercial Tool Reuse Parameter Screen

Project Type Linear Productivity Factor (PM/KSLOC)
COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Table 1: Common Values for Linear Productivity Factor

Project Type Exponential Size Penalty Factor
COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Table 2: Penalty Factors for Various Project Types

Reuse

12 CROSSTALK The Journal of Defense Software Engineering December 2004

this range will depend largely on how well
matched the reused code is to your
requirements and the quality of that code
and documentation.

If you are doing an ongoing series of
maintenance builds with a large, relatively
stable application, there are some tricks to
simplify your planning. Create a spread-
sheet containing all of the modules and
for each module, the LOC in that module.
Set percent design mode, code mode, and
so on to zero for each module in the
spreadsheet. It is also useful in the spread-
sheet to include an area where you identi-
fy the dependent relationships between
modules (this can sometimes be done
using a tool like Microsoft Project, where
you treat each module as a task in the
dependency diagram). Save this as your
master template for planning a new build.

When you are planning a build, analyze
each requirement for change to identify
the modules that must be modified and fill
in the appropriate value for design modifi-
cation, code modification, etc. Then, look
at the modules that are dependent on
these modules and put in an appropriate
value for IP&T for those dependent mod-
ules. You can then quickly calculate the
resultant equivalent scope and use this to
calculate a schedule and the effort
required. For the next build, go back to
the template you started with and repeat
the process. Some commercial estimating
tools support this approach, as well.

Adding New Functionality
Finally, when preparing a new software
build there are normally some areas where
completely new functionality is added to
the system. This functionality is defined
and estimated as new development using
the standard approaches suitable for esti-
mating new software development.

Conclusions
This article presents quantitative approach-
es to estimating scope and effort for main-
tenance, enhancement, and reuse projects.
Following these techniques will produce
reasonable and justifiable estimates and
budgets for maintenance projects, and help
with build release planning.u

References
1. Cost Xpert Group. Cost Xpert Vers. 3.3

User Manual. Rancho San Diego, CA:
Cost Xpert Group, Inc., 19 Nov. 2003.

2. Boehm, Barry W., et al. Software Cost
Estimation With COCOMO II. 1st ed.
Prentice Hall PTR, 15 Jan. 2000.

Notes
1. A Rayleigh curve yields a good approx-

imation to the actual labor curves on
software projects.

2. The work in this paper is heavily depen-
dent on work by Barry W. Boehm and
others, as documented in this latest
book [2].

December 2-3
The 6th IEEE Workshop on Mobile

Computing Systems and Applications
Lake Windermere, United Kingdom

http://wmcsa2004.lancs.ac.uk/

December 2-4
International Conference on Intelligent

Technologies (InTech) ’04
Houston, TX

http://csc.csudh.edu/
intech04/index.htm

December 4-8
IEEE/ACM International Symposium

on Microarchitecture
Portland, OR

www.microarch.org/micro37/

December 6-9
Interservice Industry Training,

Simulation, and Education Conference
Orlando, FL

www.iitsec.org

January 6-9, 2005
Internet, Processing, Systems, and

Interdisciplinary Research (IPSI) 2005
Oahu, HI

www.internetconferences.net/
industrie/hawaii2005.html

January 9-12
International Conference on Intelligent

User Interfaces
San Diego, CA

www.iuiconf.org/

January 31-February 3
16th Annual Government
Technology Conference

Austin, TX
www.govtech.net/gtc/?pg=
conference&confid=182

April 18-21
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author

William Roetzheim has
25 years experience in
the software industry and
is the author of 15 soft-
ware related books and
over 100 technical arti-

cles. He is the founder of the Cost Xpert
Group, Inc., a Jamul-based organization
specializing in software cost estimation
tools, training, processes, and consulting.

Cost Xpert Group
2990 Jamacha RD STE 250
Rancho San Diego, CA 92019
E-mail: william@costxpert.com

Reusable Software
Research Group
www.cse.ohio-state.edu/rsrg
The Reusable Software Research Group
(RSRG) began at Ohio State University
in the mid 1980’s and is currently active
at Ohio State, at Clemson University,
and at Virginia Tech. The RSRG deals
with the disciplined engineering of com-
ponent-based software systems and the
software components (aka reusable soft-
ware components) from which they can
be built. The RSRG’s work involves a
framework for component-based soft-
ware engineering, a research language,

and a component-design discipline called
RESOLVE. The group is concerned with
creating software that is at once reusable,
efficient, verifiable, and comprehensible.

RESOLVE
http://people.cs.vt.edu/~edwards/resolve
RESOLVE is a comprehensive and
robust framework, discipline, and lan-
guage for the construction of highly
reusable component-based software. The
RESOLVE Web site contains links to
online readings and an annotated bibli-
ography for those interested in this work.

WEB SITES

